采用交叉验证方法确定KNN最优k
尝试执行以下代码:
(1)导入所需要的模块和库
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.model_selection import cross_val_score
(2)建立数据集
data = load_breast_cancer()
X = data.data
y = data.target
X_train,X_test,y_train,y_test = train_test_split(X,y,
test_size=0.3,random_state=420)
(3)实例化
knn = KNeighborsClassifier(n_neighbors=8)
(4)计算交叉验证得分
val_scores = cross_val_score(knn, X_train, y_train, cv=5)
val_scores
cross_val_score(knn, X_train, y_train, cv=5).mean()
根据运行代码,尝试输出:
(1)交叉验证得分val_scores
(2)交叉验证平均分数